

The Impact of Approved Anti-Obesity Medications on Osteoarthritis Risk in Patients With Obesity: A Retrospective Cohort Study

Onur Baser, MA, MS, PhD^{1,2,3}; Lauren Isenman, MPH⁴; Gabriela Samayoa, MD, MPH⁴; Archana Dwivedi, MPH⁴; Erdem Baser, MA, MS, PhD⁴; Sefika Baser, MA, MS⁴

1Graduate School of Public Health, City University of New York, New York, NY, USA; 2Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; 3Department of Economics, Bogazici University, Istanbul, Turkey; 4Columbia Data Analytics, New York, NY, USA

BACKGROUND

Osteoarthritis (OA) is a common degenerative joint condition¹, and is the most prevalent type of arthritis, impacting 32.5 million adults in the United States.^{2,3} One of the most significant risk factors for OA is obesity, which puts extra stress on weight-bearing joints such as the knees, hips, and spine.^{4,5} Additionally, fat tissue releases chemicals that promote inflammation, which can further contribute to joint damage.^{5,6} Although there is ample evidence linking obesity to OA, little is known regarding the impact of approved anti-obesity medications (AOMs).

OBJECTIVES

This study aimed to investigate the effect of AOM utilization on the risk of OA among patients with obesity in the United States.

METHODS

Utilizing Kythera Medicare data, we conducted a retrospective cohort study from January 2020 to August 2022. Patients with obesity were classified into two cohorts: Patients 1) with vs 2) without AOM use.

- A 10% random selection of identified patients wihtout AOM use were included in the latter cohort.
- Patients in the AOM cohort had at least 1 pharmacy claim for Ozempic or Wegovy.

Diagnosis codes were used to identify OA in the inpatient and outpatient settings.

Analytic Methods

- Descriptive analysis was used to determine sociodemographic and clinical characteristics.
- The risk of OA was determined using Cox regression and Aaelen's regression. Multivariable analysis was used to control for comorbidities and demographic factors.

RESULTS

After the inclusion and exclusion criteria, 7,078 patients were identified for inclusion in the AOM cohort (6,733 Ozempic users, and 345 Wegovy users) and 91,137 patients were included in the non-AOM cohort (**Table 1**).

Table 1. Inclusion and Exclusion Criteria

	Inclusion Criteria	Patients with AOM Use
a)	≥1 pharmacy claim for obesity medications (OZEMPIC or WEGOVY) during the identification period (1/1/21 - 8/31/22); first prescription claim date was considered the treatment initiation date	151,483
b)	≥1 diagnosis claim for obesity prior to index date	19,652
c)	Continuous medical and pharmacy benefits for 12 months pre- index date	12,226
	Exclusion Criteria	
a)	Prescribed any obesity medication during the baseline period	9,770
b)	≥1 claim for an obesity medication on the same index date	9,685
c)	Osteoarthritis diagnosis during the baseline period	7,078
d)	≥99 years of age	7,078

Patients with No AOM Use
1,983,241
1,244,584
1,210,689
909,675
909,675
91,137

RESULTS (cont'd)

Table 2. Baseline Characteristics of Patients with Obesity with vs without AOM Use

	(N = 7,078)		(N = 91,137)		P-Value	Std. Diff.
Characteristics	N/Mean	%/SD	N/Mean	%/SD		
Age	72.03	4.74	74.25	5.87	<0.0001	0.3836
Age Group: 65-70	3,211	45.37%	29,003	31.82%	<0.0001	0.2893
Age Group: 71-80	3,428	48.43%	47,123	51.71%	<0.0001	0.065
Age Group: 80+	439	6.20%	15,011	16.47%	<0.0001	0.282
Sex						
Male (%)	3,238	45.75%	42,008	46.09%	0.5739	0.006
Female (%)	3,840	54.25%	49,129	53.91%	0.5739	0.006
Comorbidity Scores						
Charlson Comorbidity Index Score (≥2)	4,313	60.94%	34,203	37.53%	<0.0001	0.483
Chronic Disease Score (≥2)	5,762	81.41%	33,744	37.03%	<0.0001	0.931
Elixhauser Index Score (≥2)	6,625	93.60%	69,236	75.97%	<0.0001	0.423
Socioeconomic Status						
Low	2,423	34.90%	29,385	32.85%	0.0005	0.043
Medium	2,170	31.25%	29,685	33.19%	0.0010	0.041
High	2,350	33.85%	30,375	33.96%	0.8489	0.002
Baseline Comorbidities						
Hypertension	5,771	81.53%	64,130	70.37%	<0.0001	0.247
Congestive Heart Failure	990	13.99%	11,255	12.35%	0.0001	0.049
Myocardial Infarction	159	2.25%	1,583	1.74%	0.0018	0.038
Cerebrovascular Disease	294	4.15%	3,384	3.71%	0.0600	0.023
Peripheral Vascular Disease	921	13.01%	10,736	11.78%	0.0020	0.038
Diabetes	5,599	79.10%	32,566	35.73%	<0.0001	0.914
Chronic Obstructive Pulmonary Disease	1,270	17.94%	15,087	16.55%	0.0025	0.037
Depression	1,097	15.50%	10,576	11.60%	<0.0001	0.120

AOM, anti-obesity medication; SD, standard deviation; Std. Diff., standardized difference.

Table 3. Cox Regression Results for Time to Osteoarthritis

	Hazard	Confidence Interval			
	Ratio	Lower	Upper	p-value	
Treatment					
Yes	0.90	0.85	0.95	<0.000	
No	1.00	1.00	1.00		
Characteristics					
Age Group: 65-70	0.91	0.87	0.95	<0.000	
Age Group: 71-80	0.98	0.94	1.02	0.3369	
Age Group: 80+	1.00	1.00	1.00		
Sex					
Female	1.39	1.35	1.43	<0.000	
Male	1.00	1.00	1.00		
Comorbidity Scores					
Chronic Disease Score (≥2)	1.21	1.18	1.25	<0.000	
Socioeconomic Status					
Low	1.01	0.98	1.05	0.5304	
Medium	0.98	0.94	1.01	0.1907	
High	1.00	1.00	1.00		
Comorbidities					
Hypertension	1.00	0.97	1.03	0.9175	
Congestive Heart Failure	0.96	0.92	1.01	0.0858	
Myocardial Infarction	0.91	0.81	1.02	0.0980	
Cerebrovascular Disease	0.93	0.86	1.00	0.0645	
Peripheral Vascular Disease	1.09	1.04	1.14	<0.000	
Diabetes	0.94	0.91	0.97	<0.000	
Chronic Obstructive Pulmonary Disease	1.09	1.05	1.13	<0.000	
Depression	1.18	1.13	1.23	<0.0001	

RESULTS (cont'd)

After adjusting for demographics and clinical factors, patients in the AOM cohort demonstrated a significantly lower OA risk (hazard ratio [HR]=0.90; p<0.0001). Patients 65 to 70 years of age had a 9% lower risk than those over 80 years (HR=0.91, p<0.0001).

Patients with peripheral vascular disease, chronic obstructive pulmonary disorder, and depression had an increased risk of OA.

In individuals with obesity, AOM utilization correlated with a 10% lower OA risk (HR=0.90, p<0.0001) (**Table 3**).

CONCLUSION

Our study reveals a significant association between AOM use and a lowered risk of OA, even after meticulous adjustment for demographic and clinical variables.

These results underscore the potential of AOM utilization as a valuable component in mitigating the risk of OA in relevant patient populations.

REFERENCES

- ¹ King LK, March L, Anandacoomarasamy A. Obesity & osteoarthritis. *Indian J Med Res.* 2013;138(2):185-93.
- ² Centers for Disease Control and Prevention. Arthritis Related Statistics 2023. https://www.cdc.gov/arthritis/data_statistics/arthritis-related-stats.htm. Accessed January 2, 2024.
- ³ Centers for Disease Control and Prevention. Osteoarthritis (OA) 2020. https://www.cdc.gov/arthritis/basics/osteoarthritis.htm. Accessed January 5, 2024.
- ⁴ Abramoff B, Caldera FE. Osteoarthritis: Pathology, diagnosis, and treatment options. *Med Clin North Am.* 2020;104(2):293-311.
- ⁵ Issa R, Griffin T. Pathobiology of obesity and osteoarthritis: Integrating biomechanics and inflammation. *Pathobiol Aging Age Relat Dis.* 2012;2(1):17470.
- ⁶ Nedunchezhiyan U, Varughese I, Sun AR, et al. Obesity, inflammation, and immune system in osteoarthritis. *Front Immunol.* 2022;13:907750.

