THE CARDIOVASCULAR EFFECTS OF ABIRATERONE AND ENZALUTAMIDE AMONG VETERANS AFFAIRS METASTATIC CASTRATION-RESISTANT PROSTATE CANCER PATIENTS

Onur Baser^{1,2}, Erdem Baser², Gabriela Samayoa, MD, MPH²

¹City University of New York, NY, USA; ²Columbia Data Analytics, New York, NY, USA

The authors have no conflicts of interest to disclose in relation to this presentation or the medications described herein.

BACKGROUND

- Prostate cancer (PC) is the second most common cancer in the US,¹ comprising 14.7% of all new cancer cases and approximately 34,700 annual deaths² and is the sixth-leading cause of cancer mortality in men.³
- Metastatic castration-resistant prostate cancer (mCRPC) is the most frequent cause of prostate cancer-related death.³
- Men who progress to CRPC have a poor prognosis, with a median overall survival of <2 years.^{2,4}
- Cardiovascular disease (CVD) is the primary cause of non-cancer mortality in men with PC.⁵
- Androgen deprivation therapy (ADT) is central to treating locally advanced and metastatic disease, aiming to inhibit testosterone production or its function and halt cancer growth.

ABIRATERONE AND ENZALUTAMIDE

- Abiraterone acetate (AA; Zytiga[®]), an androgen biosynthesis inhibitor, and enzalutamide (ENZ; Xtandi[®]) an androgen receptor signaling inhibitor, standard hormonal therapies, are important additions to ADT in PC treatment, showing efficacy and tolerability in various settings (pre- and post-chemotherapy).³
- AA and ENZ have been proven to increase survival for patients with CRPC and more recently for those with metastatic hormonesensitive disease naive to hormonal agents.^{6,7}
- Concerns have arisen regarding treatment-related adverse metabolic and CV-related effects, particularly due to the higher risk of CV adverse events (AEs) linked to ADT use in a population which is already susceptible to CVD.

Objective

Examine incidence of CV AEs in patients using AA and ENZ in the VA PC population

CVD Morbidity

CVD: Predominant non-cancer cause of death in this population.⁵

CVD contributes to 30.2% of fatalities in patents with PC.⁸

Knowledge Gap

Limited availability of real-world data studies on ADT use (e.g., AA and ENZ)

METHODS: STUDY DESIGN

Retrospective Cohort Study

US Veterans Affairs (VA) population, January 1, 2019 - October 1, 2022

METHODS

Inclusion Criteria

- A1. ≥1 pharmacy claim for AA during identification period (01JAN2020-12DEC2021)
- A2. ≥1 pharmacy claim for ENZ during identification period
 - For A1 and A2: First prescription claim date = treatment index date
- B. \geq 1 PC diagnosis claim prior to the index date

Exclusion Criteria

Patients were excluded if they had:

- A. Claim for AA and/or ENZ prior to identification period (to identify new users)
- B. Claim for both AA and ENZ on index date
- C. CV-related comorbidities prior to index date (to distinguish new vs ongoing CVD cases)

- Baseline Characteristics: Age, geographic region, and Charlson Comorbidity Index (CCI) score was used as a proxy for PC disease severity
- **Outcomes:** CVD was determined based on a composite of the following 15 CV conditions:
 - 1. Hypertension
 - 2. Ischemic heart disease
 - 3. Myocardial infarction
 - 4. Heart failure
 - 5. Ventricular arrhythmias

- 6. Cerebrovascular accidents
- 7. Peripheral vascular disease
- 8. Pulmonary heart diseases
- 9. Atrial fibrillation
- 10. Paroxysmal tachycardia

- 11. Cardiomyopathy
- 12. Hypotension
- 13. Pulmonary embolism
- 14. Atherosclerosis
- 15. Aortic aneurysm

METHODS: STATISTICAL ANALYSIS

Descriptive Analysis: Numbers, percentages, means, and standard deviations; *t*-tests and Pearson chi-squared tests were employed to assess differences.

Multivariate Analysis: To control the non-random assignment of patients, we constructed logistic regression models that predict the likelihood of using each medication (**the propensity score**) and matched patients in each cohort by this score. We control for **confounders** (age, US region, CCI score).

Analysis Tools: All analyses were conducted using Pyspark and SparkR on Databricks, ensuring rigorous statistical analysis and control for non-random patient assignment.

RESULTS: STUDY ATTRITION

PSM-ADJUSTED BASELINE CHARACTERISTICS

Characteristics	Patients with PC and AA Use n = 956		Patients with PC and ENZ Use n = 956		P Value			
	N/Mean	%/SD	N/Mean	%/SD				
Age Group	73.13	8.60	73.13	8.60	1.0000			
46-54 years	14	1.46%	14	1.46%	1.0000			
55-64 years	135	14.12%	135	14.12%	1.0000			
65+ years	807	84.41%	807	84.41%	1.0000			
US Region								
Northeast	107	11.19%	95	9.94%	0.3720			
South	402	42.05%	414	43.31%	0.5790			
Midwest	202	21.13%	202	21.13%	1.0000			
West	244	25.52%	244	25.52%	1.0000			
Other	1	0.10%	1	0.10%	1.0000			
Baseline CCI Score	2.63	1.47	2.54	1.49	0.1834			

AA: abiraterone acetate; CCI: Charlson Comorbidity Index; ENZ: enzalutamide; PC: prostate cancer; SD: %/standard deviation.

PSM-ADJUSTED OUTCOMES

There is no difference among the AA cohort and ENZ cohort in the incidence of CV-related AEs.

Hypertension was the most common CV AE, slightly higher in the AA cohort than in the ENZ cohort (46.03% vs 45.40%, *P*=0.7830.

Atrial fibrillation (13.18% vs 11.92%. *P*=0.4075) and **heart failure** (10.77% vs 9.62%, *P*=0.4058) were slightly higher in the AA cohort.

Ischemic heart disease (17.26% vs 16.84%, *P*=0.8078) was slightly higher in the ENZ cohort than the AA cohort.

	Patients with PC and AA Use (n = 956)		Patients with PC and ENZ Use (n = 956)						
	N/Mean	%/SD	N/Mean	%/SD	P Value				
Follow-up CV-related AEs									
Hypertension	440	46.03%	434	45.40%	0.7830				
Ischemic heart disease	161	16.84%	165	17.26%	0.8078				
Myocardial infarction	18	1.88%	22	2.30%	0.5227				
Heart failure	103	10.77%	92	9.62%	0.4058				
Ventricular arrhythmias	48	5.02%	51	5.33%	0.7568				
Cerebral infarction	20	2.09%	24	2.51%	0.5418				
Peripheral vascular diseases	36	3.77%	39	4.08%	0.7238				
Pulmonary heart diseases	9	0.94%	13	1.36%	0.3910				
Atrial fibrillation	126	13.18%	114	11.92%	0.4075				
Paroxysmal tachycardia	18	1.88%	16	1.67%	0.7293				
Cardiomyopathy	25	2.62%	30	3.14%	0.4939				
Hypotension	38	3.97%	47	4.92%	0.3180				
Pulmonary embolism	24	2.51%	17	1.78%	0.2691				
Atherosclerosis	40	4.18%	35	3.66%	0.5558				
Aortic aneurysm	23	2.41%	21	2.20%	0.7603				

AA: abiraterone acetate; CVD: cardiovascular disease; ENZ: enzalutamide; PC: prostate cancer; SD: standard deviation.

- Provides RWE of the risk of CV events related to AA and ENZ utilization that may not have appeared in clinical trial settings
- Addresses the incidence of many CV-related AEs in a population identified without pre-existing CVD, which differs from previous studies
- Adjusting for age, US region, and CCI score, the likelihood of CV-related AEs did not differ between the AA and ENZ user groups, in agreement with existing literature.⁹⁻¹¹

Guidance for Physicians

These insights provide more well-informed decisions on patient care for PC and improve outcomes.

REFERENCES

- ¹ Rawla P. Epidemiology of prostate cancer. *World J Oncol*. 2019;10(2):63-89.
- ² National Cancer Institute. Cancer Stat Facts: Prostate Cancer, 2023. <u>https://seer.cancer.gov/statfacts/html/prost.html</u>. Accessed January3, 2024.
- ³ Zhang W, Wu T-Y, Chen Q, et al. Indirect comparison between abiraterone acetate and enzalutamide for the treatment of metastatic castration-resistant prostate cancer: A systematic review. *Asian J Androl*. 2017;19(2):196.
- ⁴ Freedland SJ, Davis M, Epstein AJ, Arondekar B, Ivanova JI. Real-world treatment patterns and overall survival among men with metastatic castration-resistant prostate cancer (mCRPC) in the US Medicare population. *Prostate Cancer Prostatic Dis.* 2023. 10.1038/s41391-023-00725-8;
- ⁵ Kakarla M, Ausaja Gambo M, et al. Cardiovascular effects of androgen deprivation therapy in prostate cancer patients: A systematic review. *Cureus*. 2022;14(6):e26209.
- ⁶ Recine F, Sternberg CN. Hormonal therapy and chemotherapy in hormone-naive and castration resistant prostate cancer. *Transl Androl Urol.* 2015;4(3):355-364.
- ⁷ American Urological Association. Advanced prostate cancer: AUA/SUO guideline 2023. <u>https://www.auanet.org/guidelines-and-quality/guidelines/advanced-prostate-cancer</u>. Accessed January 4, 2024.
- ⁸ Ye Y, Zheng Y, Miao Q, Ruan H, Zhang X. Causes of death among prostate cancer patients aged 40 years and older in the United States. *Front Oncol.* 2022;12:914875.
- ⁹ Iacovelli R, Ciccarese C, Bria E, et al. The cardiovascular toxicity of abiraterone and enzalutamide in prostate cancer. *Clin Genitourin Cancer*. 2018;16(3):e645-e53;
- ¹⁰ Cao B, Kim M, Reizine NM, Moreira DM. Adverse events and androgen receptor signaling inhibitors in the treatment of prostate cancer: A systematic review and multivariate network meta-analysis. *Eur Urol Oncol.* 2023;6(3):237-250;
- ¹¹ Conover MM, Weaver J, Fan B, et al. Cardiovascular outcomes among patients with castration-resistant prostate cancer: a comparative safety study using US administrative claims data. *Prostate*. 2023;83(7):729-739.

Gabriela Samayoa, MD, MPH

gabriela@cdanyc.com

145 Hudson Street, Suite 205, New York, NY 10013

