

A Retrospective Analysis of the Impact of Approved Anti-Obesity Medications on the Risk of Cardiovascular Disease in Patients with Obesity

Baser O^{1,2,3}, Mohamed M⁴, Samayoa G⁴, Yapar N⁴, Baser E⁵

¹Graduate School of Public Health, City University of New York, New York, NY, USA; ²Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; ³Department of Economics, Bogazici University, Istanbul, Turkey; ⁴Columbia Data Analytics, New York, NY, USA; ⁵Mergen Medical Research, Bilkent Cyberpark, Ankara, Turkey

BACKGROUND

Obesity is a prevalent and growing health concern in the United States, affecting over 42% of adults and contributing significantly to the burden of cardiovascular disease (CVD).^{1,2} Recently, approved anti-obesity medications (AOMs) such as Zepbound and Wegovy have emerged as potential interventions to reduce weight and potentially lower CVD risk among individuals with obesity.^{3,4}

OBJECTIVES

This study aimed to analyze the impact of AOM on the risk of CVD among US patients with obesity.

Setting

Retrospective cohort study using 2022-2024 Kythera data, with an identification period from 01NOV2023 to 31DEC2023, a 12-month baseline, and a 6-month follow-up period (Figure 1).

Sample

Patients with obesity in two cohorts:

- **AOM cohort:** Received tirzepatide (Zepbound) or semaglutide (Wegovy) during the identification period; the first AOM claim was designated as the index date.
- Non-AOM cohort: Not prescribed AOMs, with random index dates matching the AOM cohort; a 1% random sample was analyzed.

Detailed inclusion and exclusion criteria are outlined in Figure 1.

Outcomes

Risk of coronary artery disease, heart failure, atrial fibrillation, arrhythmia, ischemic heart disease, stroke, and peripheral vascular disease during the follow-up were assessed.

Analysis

- Descriptive analysis of sociodemographic and clinical characteristics.
- Cox regression examined CVD risk and AOM use, adjusting for demographics, comorbidities, and socioeconomic factors; additional analyses compared outcomes between tirzepatide and semaglutide users.

Figure 1. Study design and timeline

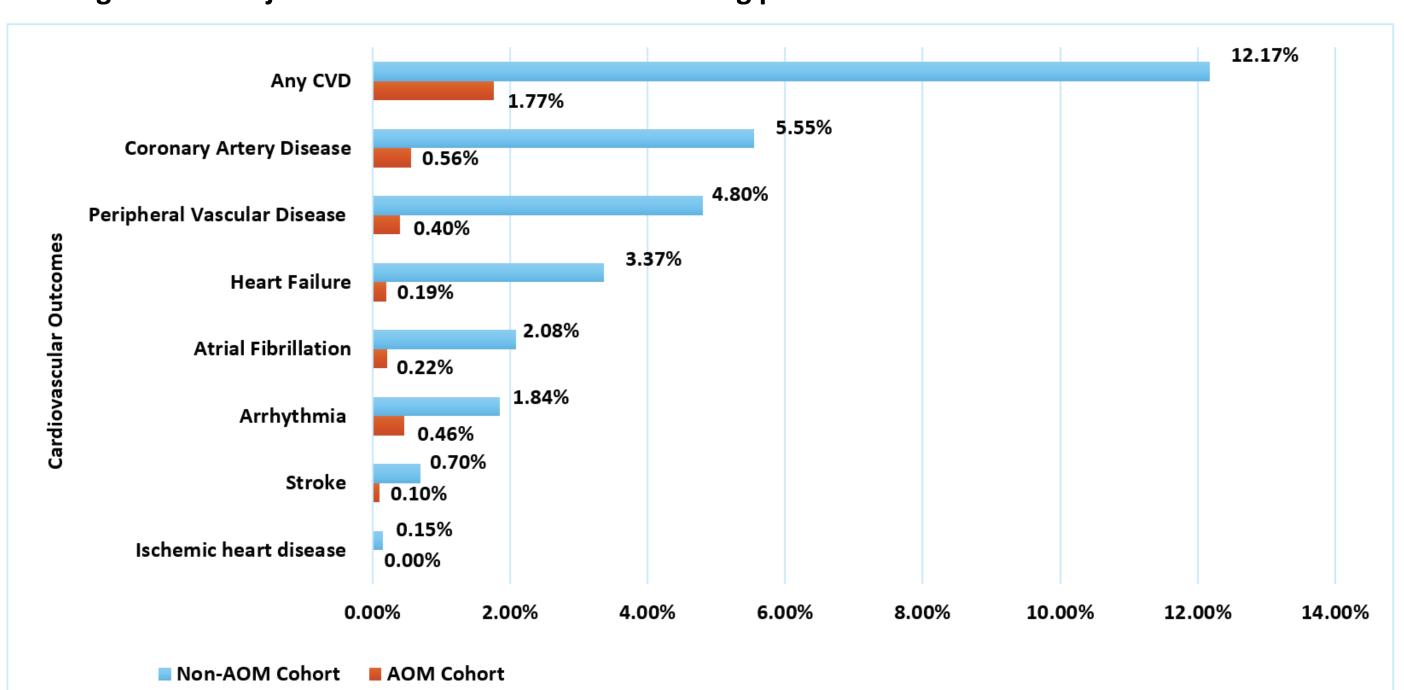
AOM: anti-obesity medication; CVD: cardiovascular disease

RESULTS

We identified 22,620 patients with obesity and AOM use (19,801 semaglutide and 2,819 tirzepatide users), and 84,427 patients with obesity without AOM use.

Significant differences were observed in the proportion of patients with Elixhauser Index Score ≥2, comprising 61.97% in the AOM cohort vs 13.50% in the non-AOM cohort (std. diff.=1.2868; Table 1).

Table 1. Baseline characteristics of patients in the AOM and non-AOM cohorts


Characteristics	AOM Cohort (Wegovy or Zepbound) (N=22,620)	Non-AOM Cohort (N=84,427)	P-value	SMD					
Age (years), mean (SD)	45.50 (12.15)	50.67 (18.15)	<0.0001	0.3035					
Age group, n (%)									
18-40 years	7,615 (33.66)	19,346 (22.91)	<0.0001	0.2489					
41-60 years	12,338 (54.54)	32,580 (38.59)	<0.0001	0.3262					
61-80 years	2,461 (10.88)	25,355 (30.03)	<0.0001	0.4438					
80+ years	20 (0.09)	3,101 (3.67)	<0.0001	0.2139					
Sex, n (%)									
Male	4,671 (20.65)	34,988 (41.44)	<0.0001	0.4373					
Female	17,949 (79.35)	49,439 (58.56)	<0.0001	0.4373					
Comorbidity scores, n (%)									
CCI ≥2	1,151 (5.09)	2,519 (2.98)	<0.0001	0.1158					
CDS ≥2	11,898 (52.60)	6,525 (7.73)	<0.0001	1.3595					
Elixhauser Score ≥2	14,017 (61.97)	11,395 (13.50)	<0.0001	1.2868					
SES, n (%)									
Low	6,282 (27.77)	28,311 (33.53)	<0.0001	0.1233					
Medium	7,389 (32.67)	27,160 (32.17)	0.1565	0.0106					
High	8,523 (37.68)	27,080 (32.08)	<0.0001	0.1191					
Baseline CVD-related comorbidities, n (%	6)								
Hypertension	7,812 (34.54)	8,872 (10.51)	<0.0001	0.6881					
Hyperlipidemia	4,105 (18.15)	4,201 (4.98)	<0.0001	0.5026					
Type 2 diabetes	1,084 (4.79)	4,687 (5.55)	<0.0001	0.0336					
COPD	2,754 (12.18)	2,538 (3.01)	<0.0001	0.4294					
Smoking history	1,076 (4.76)	845 (1.00)	<0.0001	0.2848					
GERD	386 (1.71)	291 (0.34)	<0.0001	0.1722					
Alcohol use disorder	96 (0.42)	168 (0.20)	<0.0001	0.0455					
Chronic kidney disease	11,844 (52.36)	13,087 (15.50)	<0.0001	0.9332					
Any CVD-related comorbidities	7,812 (34.54)	8,872 (10.51)	<0.0001	0.6881					

AOM: anti-obesity medication; CCI: Charlson Comorbidity Index; CDS: Chronic Disease Score; COPD: chronic obstructive pulmonary disease; GERD: gastroesophageal reflux disease; SES: socioeconomic status; SD: standard deviation; SMD: standardized mean difference

RESULTS (cont'd)

Patients with AOM use demonstrated significantly lower incidence of cardiovascular events (1.77%) than those without AOM use (12.17%, p<0.0001; Figure 2).

Figure 2. Unadjusted CVD-related outcomes among patients in the AOM and non-AOM cohorts

AOM: anti-obesity medication; CVD: cardiovascular disease

Adjusted Analysis

- Adjusted analyses confirmed that AOM use was associated with a substantially reduced risk of CVD (hazard ratio [HR]=0.37, p<0.0001; **Table 2**).
- Differences in specific cardiovascular outcomes between Zepbound and Wegovy users were observed, with Wegovy users showing a higher hazard of CVD than Zepbound users (HR=1.53, p=0.0215; **Table 3**).

Charastaristics		CII		
Characteristics	HR	Lower	Upper	P-value
Treatment				
Yes	0.37	0.34	0.42	0.0001
No	1.00	1.00	1.00	
Age (years)				
18-40	0.12	0.11	0.14	0.0001
41-60	0.57	0.53	0.60	0.0001
61-80	1.76	1.66	1.87	0.0001
80+	1.00	1.00	1.00	
Sex				
Male	0.82	0.80	0.85	0.0001
Female	1.00	1.00	1.00	
Comorbidity scores				
CCI score ≥2	2.11	1.90	2.34	0.0001
SES score				
Low	1.16	1.11	1.21	0.0001
Medium	1.11	1.07	1.16	0.0001
High	1.00	1.00	1.00	
Comorbidities				
Hypertension	0.72	0.67	0.77	0.0001
Hyperlipidemia	0.81	0.75	0.88	0.0001
Type 2 diabetes	0.78	0.71	0.85	0.0001
COPD	0.87	0.79	0.96	0.0050
Smoking history	1.18	1.03	1.35	0.0195
Alcohol use disorder	1.15	0.87	1.52	0.3176
Chronic kidney disease	1.15	0.87	1.54	0.3266

chronic obstructive pulmonary disease; CVD: cardiovascular disease; HR: hazard ratio; SES: socioeconomic status

Table 3. Cox regression results for time to CVD:

Semaglutide (Wegovy) vs tirzepatide (Zepbound)							
	HR -	CI limit					
Characteristics		Lower	Upper	<i>P</i> -value			
Treatment							
Wegovy	1.53	1.06	2.2	0.0215			
Zepbound	1	1	1				
Age (years)							
18-40	0.52	0.16	1.66	0.2684			
41-60	1.05	0.34	3.31	0.9284			
61-80	2.81	0.89	8.87	0.0786			
80+	1	1	1				
Gender							
Male	0.66	0.53	0.81	0.0001			
Female	1	1	1				
Comorbidity scores							
CCI score ≥2	1.81	1.28	2.56	0.0008			
SES score							
Low	1.16	0.91	1.48	0.2218			
Medium	1.07	0.85	1.36	0.5697			
High	1	1	1				
Comorbidities							
Hypertension	1.5	1.18	1.91	0.001			
Hyperlipidemia	1.41	1.14	1.76	0.0018			
Type 2 diabetes	1.03	0.7	1.5	0.8949			
COPD	1.15	0.87	1.52	0.3339			
Smoking history	1.79	1.32	2.42	0.0002			
Alcohol use disorder	0.97	0.5	1.9	0.9357			
Chronic kidney disease	0.57	0.18	1.8	0.3407			

CCI: Charlson Comorbidity Index; CI: confidence interval; COPD: CCI: Charlson Comorbidity Index; CI: confidence interval; COPD: chronic obstructive pulmonary disease; CVD: cardiovascular disease; HR: hazard ratio; SES: socioeconomic status

CONCLUSION

Weight reduction is crucial in reducing the incidence and CVD. The use of AOMs offers a promising solution to lessen the clinical burden of CVD in the United States. Our findings highlight a clear association between newly approved AOMs and a lower prevalence of CVD, reinforcing their effectiveness in managing cardiovascular conditions.

REFERENCES

- Eckel RH, Barouch WW, Ershow AG. Report of the National Heart, Lung, and Blood Institute-National Institute of Diabetes and Digestive and Kidney Diseases Working Group on the pathophysiology of obesity-associated cardiovascular disease. *Circulation*. 2002;105(24):2923-2928.
- Powell-Wiley TM, Poirier P, Burke LE, et al. Obesity and cardiovascular disease: a scientific statement from the American Heart Association. Circulation. 2021;143(21):e984-e1010.
- Singh G, Krauthamer M, Bjalme-Evans M. Wegovy (semaglutide): A new weight loss drug for chronic weight management. J Invest Med. 2022;70(1):5-13.
- Abbasi J. FDA green-lights tirzepatide, marketed as Zepbound, for chronic weight management. *JAMA.* 2023;330:2143-2144.

